Friday, February 3, 2012

Geologic Firsts

http://instruct.westvalley.edu/svensson/b41LifeonEarth.html
http://evolution.berkeley.edu/evosite/evohome.html



Three main types of subdivisions of geologic time

Eras:

Are major subdivisions of the geologic time scale and are based on differences of life forms.

Periods: Based on the type of life existing at the time and on major geologic events like mountain building and plate tectonic movement.
Epochs:
Based on more specific and shorter time periods of life and geologic events.



Species:

A group of individuals that breed among themselves to make offspring.

Natural Selection:

The process by which living organisms with traits best suited to an environment survive, while others die out because they lack those desirable traits.

This table is not to any scale.)

EonEraPeriod[1]Series/
Epoch
Major EventsStart, Million
Years Ago[2]
Phane-
rozoic
CenozoicNeogene[3]HoloceneEnd of recent glaciation and rise of modern civilization.0.011430
PleistoceneFlourishing and then extinction of many large mammals (Pleistocene megafauna). Evolution of anatomically modern humans.1.806 *
PlioceneIntensification of present ice age; cool and dry climate. Australopithecines, many of the existing genera of mammals, and recent mollusks appear. Homo habilis appears.5.332 *
MioceneModerate climate; Orogeny in northern hemisphere. Modern mammal and bird families became recognizable. Horses and mastodons diverse. Grasses become ubiquitous. First apes appear.23.03 *
Paleogene
[3]
OligoceneWarm climate; Rapid evolution and diversification of fauna, especially mammals. Major evolution and dispersal of modern types of flowering plants33.9 *
EoceneArchaic mammals (e.g. Creodonts, Condylarths, Uintatheres, etc) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. Primitive whales diversify. First grasses. Reglaciation of Antarctica; current ice age begins.55.8 *
PaleoceneClimate tropical. Modern plants appear; Mammals diversify into a number of primitive lineages following the extinction of the dinosaurs. First large mammals (up to bear or small hippo size).65.5 *
MesozoicCretaceousUpper/LateFlowering plants proliferate, along with new types of insects. More modern teleost fish begin to appear. Ammonites, belemnites, rudist bivalves, echinoids and sponges all common. Many new types of dinosaurs (e.g. Tyrannosaurs, Titanosaurs, duck bills, and horned dinosaurs) evolve on land, as do modern crocodilians; and mosasaurs and modern sharks appear in the sea. Primitive birds gradually replace pterosaurs. Monotremes, marsupials and placental mammals appear. Break up of Gondwana.99.6 *
Lower/Early145.5
JurassicUpper/LateGymnosperms (especially conifers, Bennettitales and cycads) and ferns common. Many types of dinosaurs, such as sauropods, carnosaurs, and stegosaurs. Mammals common but small. First birds and lizards. Ichthyosaurs and plesiosaurs diverse. Bivalves, Ammonites and belemnites abundant. Sea urchins very common, along with crinoids, starfish, sponges, and terebratulid and rhynchonellid brachiopods. Breakup of Pangea into Gondwana and Laurasia.161.2
Middle175.6 *
Lower/Early199.6
TriassicUpper/LateArchosaurs dominant on land as dinosaurs, in the oceans as Ichthyosaurs and nothosaurs, and in the air as pterosaurs. cynodonts become smaller and more mammal-like, while first mammals and crocodilia appear. Dicrodium flora common on land. Many large aquatic temnospondyl amphibians. Ceratitic ammonoids extremely common. Modern corals and teleost fish appear, as do many modern insect clades.228.0
Middle245.0
Lower/Early251.0 *
PaleozoicPermianLopingianLandmasses unite into supercontinent Pangea, creating the Appalachians. End of Permo-Carboniferous glaciation. Synapsid reptiles (pelycosaurs and therapsids) become plentiful, while parareptiles and temnospondyl amphibians remain common. In the mid-Permian, coal-age flora are replaced by cone-bearing gymnosperms (the first true seed plants) and by the first true mosses. Beetles and flies evolve. Marine life flourishes in warm shallow reefs; productid and spiriferid brachiopods, bivalves, forams, and ammonoids all abundant. Permian-Triassic extinction event occurs 251 mya: 95 percent of life on Earth becomes extinct, including all trilobites, graptolites, and blastoids.260.4 *
Guadalupian270.6 *
Cisuralian299.0 *
Carbon-
iferous
[4]/
Pennsyl-
vanian
Upper/LateWinged insects radiate suddenly; some (esp. Protodonata and Palaeodictyoptera) are quite large. Amphibians common and diverse. First reptiles and coal forests (scale trees, ferns, club trees, giant horsetails, Cordaites, etc.). Highest-ever oxygen levels. Goniatites, brachiopods, bryozoa, bivalves, and corals plentiful in the seas. Testate forams proliferate.306.5
Middle311.7
Lower/Early318.1 *
Carbon-
iferous
[4]/
Missis-
sippian
Upper/LateLarge primitive trees, first land vertebrates, and amphibious sea-scorpions live amid coal-forming coastal swamps. Lobe-finned rhizodonts are big fresh-water predators. In the oceans, early sharks are common and quite diverse; echinoderms (esp. crinoids and blastoids) abundant. Corals, bryozoa, goniatites and brachiopods (Productida, Spiriferida, etc.) very common. But trilobites and nautiloids decline. Glaciation in East Gondwana.326.4
Middle345.3
Lower/Early359.2 *
DevonianUpper/LateFirst clubmosses, horsetails and ferns appear, as do the first seed-bearing plants (progymnosperms), first trees (the tree-fern Archaeopteris), and first (wingless) insects. Strophomenid and atrypid brachiopods, rugose and tabulate corals, and crinoids are all abundant in the oceans. Goniatite ammonoids are plentiful, while squid-like coleoids arise. Trilobites and armoured agnaths decline, while jawed fishes (placoderms, lobe-finned and ray-finned fish, and early sharks) rule the seas. First amphibians still aquatic. "Old Red Continent" of Euramerica.385.3 *
Middle397.5 *
Lower/Early416.0 *
SilurianPridoliFirst vascular plants (the whisk ferns and their relatives), first millipedes and arthropleurids on land. First jawed fishes, as well as many armoured jawless fish, populate the seas. Sea-scorpions reach large size. Tabulate and rugose corals, brachiopods (Pentamerida, Rhynchonellida, etc.), and crinoids all abundant. Trilobites and mollusks diverse; graptolites not as varied.418.7 *
Upper/Late (Ludlow)422.9 *
Wenlock428.2 *
Lower/Early (Llandovery)443.7 *
OrdovicianUpper/LateInvertebrates diversify into many new types (e.g., long straight-shelled cephalopods). Early corals, articulate brachiopods (Orthida, Strophomenida, etc.), bivalves, nautiloids, trilobites, ostracods, bryozoa, many types of echinoderms (crinoids, cystoids, starfish, etc.), branched graptolites, and other taxa all common. Conodonts (early planktonic vertebrates) appear. First green plants and fungi on land. Ice age at end of period.460.9 *
Middle471.8
Lower/Early488.3 *
CambrianUpper/Late (Furongian)Major diversification of life in the Cambrian Explosion. Many fossils; most modern animal phyla appear. First chordates appear, along with a number of extinct, problematic phyla. Reef-building Archaeocyatha abundant; then vanish. Trilobites, priapulid worms, sponges, inarticulate brachiopods (unhinged lampshells), and many other animals numerous. Anomalocarids are giant predators, while many Ediacaran fauna die out. Prokaryotes, protists (e.g., forams), fungi and algae continue to present day. Gondwana emerges.501.0 *
Middle513.0
Lower/Early542.0 *
Proter-
ozoic

[5]
Neo-
proterozoic
EdiacaranGood fossils of multi-celled animals. Ediacaran fauna (or Vendobionta) flourish worldwide in seas. Trace fossils of worm-like Trichophycus, etc. First sponges and trilobitomorphs. Enigmatic forms include oval-shaped Dickinsonia, frond-shaped Charniodiscus, and many soft-jellied creatures.630+5/-30 *
CryogenianPossible "snowball Earth" period. Fossils still rare. Rodinia landmass begins to break up.850 [6]
TonianRodinia supercontinent persists. Trace fossils of simple multi-celled eukaryotes. First radiation of dinoflagellate-like acritarchs.1000 [6]
Meso-
proterozoic
StenianNarrow highly metamorphic belts due to orogeny as supercontinent Rodinia is formed.1200 [6]
EctasianPlatform covers continue to expand. Green algae colonies in the seas.1400 [6]
CalymmianPlatform covers expand.1600 [6]
Paleo-
proterozoic
StatherianFirst complex single-celled life: protists with nuclei. Columbia is the primordial supercontinent.1800 [6]
OrosirianThe atmosphere became oxygenic. Vredefort and Sudbury Basin asteroid impacts. Much orogeny.2050 [6]
RhyacianBushveld Formation occurs. Huronian glaciation.2300 [6]
SiderianOxygen Catastrophe: banded iron formations result.2500 [6]
Archean
[5]
NeoarcheanStabilization of most modern cratons; possible mantle overturn event.2800 [6]
MesoarcheanFirst stromatolites (probably colonial cyanobacteria). Oldest macrofossils.3200 [6]
PaleoarcheanFirst known oxygen-producing bacteria. Oldest definitive microfossils.3600 [6]
EoarcheanSimple single-celled life (probably bacteria and perhaps archaea). Oldest probable microfossils.3800
Hadean
[5][7]
Lower Imbrian[8]c.3850
Nectarian[8]c.3920
Basin Groups[8]Oldest known rock (4100 mya).c.4150
Cryptic[8]Formation of earth (4570 mya). Oldest known mineral (4400 mya).c.4570




No comments:

Post a Comment

Note: Only a member of this blog may post a comment.